Code
library(stringr)
library(data.table)
library(reactable)
= fread("../inst/data/c_s.txt")
c_s
reactable(
c_s,defaultPageSize = 5,
theme = reactableTheme(
backgroundColor = "transparent"
) )
The typical Ig repertoire comprises one immunoglobulin heavy chain (IGH) and two light chains, κ (IGK) and λ (IGL). Immunoglobulins undergo diversification through somatic recombination, randomly combining variable (V), diversity (D), and joining (J) gene segments.
These are examples of a tables containing the necessary informations for gene repertoire visualizations. The tables includes mock data specifically generated for this purpose.
A heatmap is a graphical representation of data where the individual values contained in a matrix are represented as colors.
The heatmap()
function is a built-in feature of R, providing a powerful tool for generating high-quality heatmaps from matrices. It includes statistical functionalities to normalize input data, perform clustering algorithms and visualize the results
library(ComplexHeatmap)
library(data.table)
library(stringr)
col_ann = HeatmapAnnotation(
"cell" = c_s$cell,
simple_anno_size = unit(.75, "lines"),
col = list(
cell = c(
"cell01" = "#358DB9",
"cell02" = "#CF4E9C",
"cell03" = "#2E2A2B"
)
)
)
row_ann = rowAnnotation(
"Type" = r_s$type,
simple_anno_size = unit(.75, "lines"),
col = list(
Type = c(
"protein_coding" = "#358DB9",
"antisense" = "#CF4E9C",
"pseudogene" = "#2E2A2B",
"others" = "#2F509E"
)
)
)
Heatmap(
m, name = "Repertoire",
border = TRUE,
left_annotation = row_ann,
top_annotation = col_ann,
row_split = 3, column_split = 3,
clustering_distance_rows = "euclidean",
clustering_distance_columns = "euclidean",
clustering_method_rows = "ward.D2",
clustering_method_columns = "ward.D2",
row_names_gp = gpar(fontsize = 6)
) |>
draw(merge_legends = TRUE, background = "transparent")